Une nouvelle fenêtre expérimentale ouverte sur l'intérieur des planètes
En s’enfonçant à l’intérieur d’une planète, la pression et la température augmentent, modifiant les propriétés physiques de ses différentes enveloppes (manteau rocheux fait de silicates et noyau métallique). Pour comprendre l’origine de notre planète et sa dynamique interne, il est crucial d’atteindre des pressions de plus de 100 GPa et des températures de 6000 Kelvins, ce qui représente un défi expérimental !
Une nouvelle approche, couplant des lasers de puissance et des rayons X en moins d’une nanoseconde, a permis de reproduire en laboratoire le manteau terrestre à plus de 2000 km de profondeur.
Ces résultats ouvrent des perspectives intéressantes : ils permettront non seulement de mieux simuler les premiers instants de la Terre, lorsqu’elle était à l’état d’un océan de magma, mais également d’atteindre des conditions de pression et de température plus importantes, semblables à celles régnant dans les intérieurs des Super-Terres, exoplanètes analogues à la Terre mais de plus grande taille.
En savoir plus
In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures
Guillaume Morard, Jean-Alexis Hernandez, Marco Guarguaglini, Riccardo Bolis Alessandra Benuzzi-Mounaix, Tommaso Vinci, Guillaume Fiquet, Marzena. A. Baron, Sang Heon Shim, Byeongkwan Ko, Arianna E. Gleason, Wendy L. Mao, Roberto Alonso-Mori, Hae Ja Lee, Bob Nagler, Eric Galtier, Dimosthenis Sokaras, Siegfried H. Glenzer, Denis Andrault, Gaston Garbarino, Mohamed Mezouar, Anja Schuster, Alessandra Ravasio
https://www.pnas.org/content/early/2020/05/14/1920470117